

## DBM-003-1163004

Seat No. \_\_\_\_\_

## M. Sc. (Sem. III) (CBCS) Examination

June - 2022

Mathematics: Course No. 3004

(Discrete Mathematics)

Faculty Code: 003

Subject Code: 1163004

Time: 2.30 Hours] [Total Marks: 70

#### **Instructions:**

- (1) There are ten questions.
- (2) Answer any five of them.
- (3) Each question carries 14 marks.

### 1 Answer the following:

 $7 \times 2 = 14$ 

- (a) Define: Minterm and Complemented lattice.
- (b) Define with example: Isomorphism of Monoids.
- (c) Draw: Hasse diagram for  $(D_{30}, R)$ .

(d) Let 
$$M_1 = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}$$
  $M_2 = \begin{bmatrix} 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{bmatrix}$ . Find  $M_1 \odot M_2$ 

- (e) Define: Lattice, with example.
- (f) Define: (1) Sub-Lattice (2) Distributive lattice.
- (g) Define a Congruence relation on a Semigroup.
- (h) Define: Poset with example.

# **2** Answer the following :

 $7 \times 2 = 14$ 

- (1) Define: Machine congruence on a finite state machine.
- (2) Define: Phrase structure grammar.
- (3) State: Kleen's Theorem.
- (4) Define: Language of a Moore machine.
- (5) Define the term: Proposition with example.
- (6) Make a truth table for the statement: (p  $\wedge$  q)  $\vee$  (  $\sim$  p).
- (7) Make truth tables for the statements: (i)  $p \land q$  (ii)  $p \lor q$ .

3 Answer the following questions:

 $2 \times 7 = 14$ 

- (a) Let R be a relation defined on A and |A| = n. Prove that,  $R^{\infty} = R \cup R^2 \cup R^3 \cup .... \cup R^n.$
- (b) Define a Modular lattice. Let  $(L, \leq)$  be lattice. Then  $(L, \leq)$  is Modular lattice if and only if the following holds: "If M is any Sublattice of  $(L, \leq)$ . Then M is not isomorphic to the Pentagon lattice."
- 4 Answer the following questions:

 $2 \times 7 = 14$ 

- (a) Let G be a group and S be a normal subgroup of G. Let R be a relation on G by aRb if and only if  $ab^{-1} \in S$ . Prove that, R is a congruence relation on G.
- (b) Let  $p(x, y, z) = (x \wedge y) \vee (y \wedge z')$ . Determine the function  $f: B_3 \to B$  induced by p(x, y, z).
- 5 Answer the following questions:

 $2 \times 7 = 14$ 

- (a) Let p, q be any proposition or statement. Prove that, each of the following compound statements are tautology:
  - (i)  $p \land q \Rightarrow p$
  - (ii)  $p \Rightarrow p \lor q$
  - (iii)  $\sim p \Rightarrow (p \Rightarrow q)$
  - (iv)  $\sim (p \Rightarrow q) \Rightarrow p$
  - (v)  $[p \land (p \Rightarrow q)] \Rightarrow q$
  - (vi)  $[p \land (p \Rightarrow q)] \Rightarrow p$
- (b) For the languages given in (i) and (ii) below, construct a phrase structure grammar G such that L(G) = L.
  - (i)  $L = \{a^n b^m / n \ge 1, m \ge 3\}$  and
  - (ii)  $L = \{x^n y^m / n \ge 2, m \ge 0 \text{ and even} \}$

**6** Answer the following questions:

- $2 \times 7 = 14$
- (a) Define: Lexicographic order. Let  $n \ge 1$ . Let  $(L, \le)$  be a finite Boolean algebra. Prove that, the number of atoms of  $(L, \le)$  is same as number of co-atoms of  $(L, \le)$ .
- (b) State and prove: Pumping lemma.
- 7 Answer the following questions:

 $2 \times 7 = 14$ 

- (a) State and prove: Fundamental theorem of Homomorphism of semigroups.
- (b) Describe steps of Warshall's Algorithm for finding  $W_k$  from  $W_{k-1}, k \in \{1, 2, ...., n\}$ . Also using them find  $\mathbb{R}^{\infty}$  for  $A = \{1, 2, 3, 4\}$  with  $R = \{(1, 2), (2, 3), (3, 2), (3, 4)\}$ .
- **8** Answer the following questions:

 $2 \times 7 = 14$ 

- (a) Define atom. Let  $(L, \leq)$  be a finite Boolean algebra. Let  $a \in L$ ,  $a \neq 0$ . Let  $\{a_1, a_2, a_3, \dots, a_m\}$  be the set of all atoms of  $(L, \leq)$  such that  $a_i \leq a$  for each  $i \in \{1, 2, ..., m\}$ . Prove that,  $a = a_1 \vee a_2 \vee a_3 \vee ... \vee a_m$
- (b) Define: GLB and LUB of a subset of  $(P, \leq)$ . Let  $(L_i \leq_i)$  be lattices for each  $i \in \{1, 2, ..., n\}$ . Let  $L = L_1 \times L_2 \times .... \times L_n$  be the Cartesian product of  $L_1, L_2, ...., L_n$ . Let  $\leq$  be the product partial order on L. Prove that,  $(L = L_1 \times L_2 \times .... \times L_n, \leq)$  is also a lattice.
- **9** Answer the following questions:

 $2 \times 7 = 14$ 

- (a) Let R is an equivalence relation on  $A = \{1, 2, 3, 4, 5\}$  determined by the partition  $P_1$  of A whose members are  $\{1, 2\}, \{3, 4\}, \{5\}$  and S is another equivalence relation on A determined by the partition  $P_2$  of A whose members are  $\{1\}, \{2\}, \{3\}, \{4, 5\}$ . Find  $(R \cup S)^{\infty}$  using:
  - (i) Graphical Method (ii) Matrix Method

- (b) Let  $f_1: B_2 \to B$  be a Boolean function with  $S(f_1) = \{00, 01, 10\}$  and let  $f_2: B_3 \to B$  be a Boolean function with  $S(f_2) = \{000, 001, 011, 010\}$ . Construct Karnaugh maps for both  $f_1$  and  $f_2$ . Also find the Boolean expressions for both of them.
- 10 Answer the following questions:

 $2 \times 7 = 14$ 

- (a) Prove that  $(\mathbb{N}, R)$  is distributive lattice, where R is divisibility relation on  $\mathbb{N}$ .
- (b) Let *p*, *q* be propositions. Prove that the following statements hold:
  - (i)  $(p \Rightarrow q) \equiv (\sim p) \lor q$
  - (ii)  $(p \Rightarrow q) \equiv \sim q \Rightarrow \sim p$
  - (iii)  $\sim (p \Rightarrow q) \equiv (p \land \sim q)$
  - (iv)  $\sim (p \Leftrightarrow q) \equiv (p \land \sim q) \lor (q \land \sim p)$
  - (v)  $(p \Leftrightarrow q) \equiv (p \Rightarrow q) \land (q \Rightarrow p)$
  - (vi)  $\sim (p \land q) \equiv (\sim p) \lor (\sim q)$
  - (vii)  $\sim (\sim p) \equiv p$
  - (viii)  $\sim (p \land q) \equiv (\sim p) \lor (\sim q)$

\_\_\_\_\_